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Abstract

Sampling from discrete distributions remains a challenge in machine learning, with tradi-
tional Markov Chain Monte Carlo (MCMC) methods such as Gibbs sampling suffering from
inefficiency due to single-coordinate updates. Recent gradient-based discrete samplers have
improved performance but remain constrained by the original discrete structures, which
potentially hinder the convergence. To address this issue, we propose a hybrid approach
that enables more global and informed proposals by introducing a continuous exploratory
intermediate before the discrete update. This method, called Discrete Langevin Samplers
via Continuous intermediates (cDLS), bridges the gap between discrete and continuous
sampling and significantly accelerates convergence while maintaining theoretical guaran-
tees. We develop variants of ¢cDLS to ensure broad applicability, including unadjusted and
Metropolis-adjusted versions. Experiments on Ising models, restricted Boltzmann machines,
deep energy-based models, and Bayesian binary neural networks validate the superior per-
formance of cDLS compared to existing methods. Our results highlight the potential of
hybrid continuous-discrete exploration for advancing general discrete sampling.

1 Introduction

Discrete random variables are pervasive, from text data to complex genetic sequences. With the rapid
progress of machine learning, the demand for effective sampling algorithms tailored to discrete distributions
has become both urgent and essential. Markov Chain Monte Carlo (MCMC) remains a cornerstone for
sampling from complex distributions, where its effectiveness highly depends on the proposal distribution.
Among MCMC methods, Gibbs sampling is particularly popular for discrete distributions, yet its efficiency
suffers in high-dimensional settings due to its coordinate-wise update scheme. To address this limitation,
recent works have incorporated gradient information into discrete sampling, enabling more effective explo-
ration and faster convergence (Grathwohl et al., [2021} [Zhang et al.| [2022; |Sun et al., [2022b; [2023a;b; [Xiang
et al.l 2023; Pynadath et al. 2024). These methods have demonstrated strong empirical performance and
theoretical guarantees, advancing the state of the art in high-dimensional discrete sampling.

Although existing gradient-based discrete samplers benefit from the assumption of a differentiable extension,
they do not fully exploit this smooth structure. Their updates remain restricted to discrete domains, which
hinders larger moves and faster convergence, especially in high-dimensional spaces.

To fully harness smooth structure, we propose a hybrid method, Discrete Langevin Samplers via Continuous
Intermediates (¢cDLS), which introduces a continuous intermediate to accelerate the discrete Langevin sam-
pler (Zhang et al., |2022). By locally relaxing discrete variables into a continuous space, cDLS uses gradient
information more effectively, enabling smoother and more directed transitions. Conceptually, it constructs
auxiliary continuous paths to accelerate exploration: starting at a discrete point, traversing a continuous
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Figure 1: Overview of the proposed cDLS. Starting from a discrete state, the sampler performs a continuous
update using gradient, then constructs a discrete proposal using discrete Langevin, and finally transitions
to a new discrete state.

intermediate guided by gradient, and returning to the discrete space. A visualization of this process is shown
in Figure

By bridging discrete and continuous domains, cDLS inherits the efficiency of continuous Langevin dynamics
while maintaining exact discrete updates. This hybrid design enables geometry-aware large moves and faster
mixing, substantially improving convergence across various experiments. Notably, our framework is general
and can be integrated with a wide range of gradient-based discrete samplers. For clarity and brevity, we
primarily focus our discussion on the Discrete Langevin Samplerﬂ which serves as a representative example
in the domain of discrete gradient-based sampling.

We summarize our contributions as follows:

¢ We propose discrete Langevin samplers via continuous intermediates (cDLS), a novel hybrid sampling
framework that leverages continuous exploration to accelerate discrete Langevin sampling.

e We theoretically prove the correctness and efficiency of cDLS. We show that it achieves zero asymp-
totic bias for log-quadratic distributions without a Metropolis-Hastings correction, and it has small
bias for distributions close to log-quadratic. Furthermore, we establish non-asymptotic convergence
and inference guarantees for general discrete distributions.

o We demonstrate the effectiveness of our proposed algorithm on several experiments, including Ising
models, restricted Boltzmann machines, deep energy-based models, and binary Bayesian neural
networks. Notably, cDLS can achieve strong performance and low bias even without the use of
Metropolis-Hastings correction.

2 Related Work

Gradient-based Discrete Sampling Efficient sampling from high-dimensional discrete distributions re-
mains challenging due to the lack of informative proposals and poor scalability of traditional methods.
Gradient-based approaches, such as Gibbs with Gradients (GWG)(Grathwohl et al [2021)) approximate lo-
cally balanced proposals using first-order Taylor expansion to guide coordinate selection,
significantly reducing computational cost. Then, [Sun et al. (2022b) introduced auxiliary path variables to
extend local neighborhoods while maintaining gradient-based advantages. However, these methods still per-
form sequential updates and are limited by local neighborhood constraints. Inspired by Langevin dynamics
in continuous space (Roberts & Stramer} [2002), Zhang et al.| (2022) introduced a parallel update scheme
for discrete sampling using a Langevin-like proposal. Follow-up works further extend this line by handling
non-differentiable objectives (Xiang et al., 2023) and introducing adaptive scaling (Sun et al., 2023a} |2022a}
[Pynadath et all [2024). In contrast, our work aims to accelerate gradient-based discrete sampling by more
fully exploiting the underlying continuous structure, rather than relying solely on gradients. This introduces
a new way to utilize continuous information, bridging the gap between discrete and continuous sampling
approaches.

1Our framework is general and can be readily applied to other gradient-based discrete samplers, such as Gibbs with Gradients
(GWG) (Grathwohl et all} |2021). Due to space constraints, we present these extensions in Appendix@




Continuous Relaxation Incorporating gradients in the proposal has been a great success in continuous
space, such as the Langevin algorithm, Hamiltonian Monte Carlo (HMC), and their variants (Duane et al.
[1987; Neal et al. [2011). To take advantage of this success, continuous relaxation is developed, which samples
in a continuous space and then transforms the collected samples to the original discrete space
[2020; Nishimura et al., 2020). As shown in previous work, this type of method usually does not scale to
high-dimensional discrete distributions (Grathwohl et al. 2021). Relaxation-based methods conduct most
sampling steps in the continuous space, with discretization applied only at the end. In contrast, our approach
only incorporates a continuous intermediate step within each discrete update. This design preserves the
discrete nature of the target space throughout the sampling process. The continuous intermediates in ¢cDLS
are not used to replace discrete sampling but instead act as local exploratory guides that improve discrete
proposal construction then accelerate convergence.

3 Preliminaries

We aim to sample from a discrete target distribution of the form:

1
w(0) = 7 exp(U(0)), 6¢€0, (1)
where 6 is a d-dimensional variable, © is a finite discrete variable domain, U is the energy function, and
Z is the normalizing constant for 7 to be a distribution. In this paper, we have the following assumptions
according to the literature on gradient-based discrete sampling (Grathwohl et all 2021; |Sun et al., 2022b}
[Zhang et al., 2022)): (1) The energy function U can be extended to a differentiable function in R¢. (2) The

- . . : d
domain is factorized coordinate-wise, © = [[;_; 6;.

Langevin Algorithm The Langevin algorithm is a sampling method that uses gradient information with
stochastic noise to generate samples from complex distributions. Given a target distribution [I} the Langevin
dynamics are defined by the stochastic differential equation:

d6, = VU(8,)dt + v2dW, (2)

where W; denotes the standard Brownian motion. The discretized version with stepsize o updates samples
through:

041 = 0, + %VU(et) +Vag, (3)

where & ~ N(0, I4xq). This algorithm efficiently explores probability spaces by combining deterministic
gradient with Gaussian noise, making it widely applicable in Bayesian inference, energy-based models, and
other machine learning tasks (Roberts & Stramer| 2002)). Despite its simplicity, Langevin sampling often
mixes slowly and is sensitive to hyperparameters, which limits its practical use compared with Hamiltonian
Monte Carlo. These issues become more severe in discrete spaces where gradients are undefined. This gap
motivates our proposed framework, which bridges discrete and continuous domains to retain the efficiency
of Langevin dynamics while enabling exact discrete updates.

Discrete Langevin Proposal Discrete Langevin Proposal (DLP) is a counterpart of the Langevin algo-
rithm in discrete domains (Zhang et all) |[2022). Given a current state 6, the proposal for 6’ € © is

exp (=55 o =0 - 3vU©)];)
Zo(9)

q(6'|0) = ; (4)
where Zg(0) is the normalizing constant over the discrete domain. It is worth noting that if ¢(6'|6) were
defined over R instead of ©, it would correspond exactly to a Gaussian distribution with mean 6+ $VU(6)
and covariance «f, which is one of the reasons why this method is referred to as the discrete Langevin
sampler.



The proposal admits a coordinate-wise factorization, allowing updates to be performed in parallel:

(6] — 0:)°

1
q(0:16) < exp <2VU(9)1(9; —0;) — %0

> , 0.€0,. (5)

Like other gradient-based discrete sampling methods, DLP performs updates only in discrete space, which
limits its ability to exploit the smooth structural information in the target distributions.

4 Discrete Langevin Sampler via Continuous Intermediates

In this section, we propose the Discrete Langevin Samplers via Continuous Intermediates (cDLS), a novel
discrete sampler that improves discrete Langevin sampling by leveraging continuous intermediates. The core
idea is to temporarily escape the discrete domain via a gradient-informed extension in continuous space, and
then return to the discrete space through a projection and a discrete update. This allows the sampler to
better utilize the underlying geometry of the energy function U to facilitate more informed and exploratory
updates. Unlike existing methods that operate entirely in the discrete domain, ¢cDLS introduces a short
excursion into continuous space to exploit gradient information more effectively.

4.1 Continuous Intermediates via Gradient Flow

Given the current discrete state 6 € ©, we define a continuous intermediate 6¢ by first taking a gradient
ascent step in continuous space:

O = 0+ VU (6), (6)

where oy > 0 controls the magnitude of the exploration. Since ¢, may be far from the feasible domain, we

project it back into a convex region K C R? that relaxes the original discrete domain ©:
0° = PrOjK(efaw) = arg min Hy - Glfaw”' (7)
yeK

This projected point 8¢ serves as a continuous intermediate from which we construct a discrete proposal.
K is usually easy to decide. For example, if § € {0,1}¢, then K can be [0,1]¢. Such a projection is natural
from the intrinsic structure of discrete spaces, ensuring that the continuous intermediates remain close to
the feasible region. If §, moves substantially away from the initial discrete distribution space, this kind of
update will be meaningless. The main purpose of this step is to inject gradient flow into the sampling process
without permanently leaving the discrete space.

4.2 Discrete Langevin Proposal from Continuous Intermediates

Once the continuous intermediate 6¢ is obtained, we construct a discrete proposal 6’ € © using a Langevin-

inspired method. We adopt the structure of the Discrete Langevin Proposal (DLP) (Zhang et al. [2022]), but

reinterpret it as centered at 6¢:

exp (o [l = 0° — §v0 ()
Z@(@C) ’

q(0'16°) = (8)

where Zg(6°) normalizes the distribution over the discrete domain ©. Since © is coordinate-factorized
according to assumption, this proposal admits a product decomposition:

d
(016%) = L a:(046°), ©)

where each g; is a categorical distribution defined as:

(6; — 65)°

n'1nc 1 (O — S —
qi(0;]10°) x exp <2VU(9 )i (60 — 65) o

) 0; € ©;. (10)



This form allows for parallelized sampling of each dimension and can be efficiently implemented. Crucially,
by using 6¢ instead of 8, we incorporate richer gradient information and enable proposals that move beyond
the local discrete neighborhood.

4.3 Metropolis-Hastings Correction

To ensure the resulting Markov chain has the desired stationary distribution 7(6), we optionally apply a
Metropolis-Hastings (MH) correction (Metropolis et al., 1953} [Hastings) [1970]), which is usually combined
with proposals to make the Markov chain reversible. Given the proposal 8" ~ ¢(-|0¢), we compute the
acceptance probability as:

/ . / q(910;)

A0 — 6") = min (1,exp(U(0) U(e)) q(9’|ﬂc)) , (11)
where 6° and 6/, are the continuous intermediates corresponding to 6 and ', respectively. This correction
is necessary when exact reversibility is required, although in practice, cDLS is often found to perform well
even without MH correction due to its efficient utilization of local gradient information. Moreover, the MH
correction provides an additional benefit of enabling adaptive stepsize selection based on the acceptance
rate (Sun et all 2022al), whereas samplers without MH correction typically rely on heuristic or grid-based
tuning to identify suitable parameters.

4.4 Summary of the cDLS Framework

cDLS extends the capabilities of discrete Langevin samplers by introducing a gradient-guided continuous
intermediate #° between discrete updates. This intermediate enables broader and more informed transitions
while preserving the structure of discrete sampling. We outline the sampling algorithms in Algorithm [I]
The different steps compared with [Zhang et al.| (2022) are highlighted in blue. We call the sampler with MH
correction as Discrete Metropolis Adjusted Langevin Algorithm via Continuous intermediates (cDMALA) and
without MH correction as Discrete Unadjusted Langevin Algorithm via Continuous intermediates(cDULA).

5 Convergence Analysis

Algorithm 1: Discrete Langevin Samplers via
In this section, we present a theoretical analysis Continuous Intermediates
of the proposed cDLS framework, including both Input: Stepsize a, ag; Initial Sample 6.
the asymptotic convergence of cDULA and the non- while true do

asymptotic efficiency of cDMALA. Specifically: fori=1,2,...,d do
Compute 05, < 0 + LVU(0);
o In Section we show that for log- Project #¢,,, as in Equation
quadratic target distributions, cDULA in- Construct ¢;(-|6°) as in Equation
troduces no asymptotic bias as the stepsize Sample 0] ~ ¢;(-6°);
a— 0. end
o In Section [5.2] we generalize this result to // Optionally, do the MH step
istributi : Compute q(0'|6¢) = I1, q:(0}]6°);
distributions that are approximately log- pute gl i G\
quadratic and characterize the bias in terms Compute 05, < 0 + VU (0');
of deviation from linearity. Project 6¢,,, as in Equation

Y\ ) X .
e In Section we analyze cDMALA and Compute g(6]6;) = IT; ¢:(6:/0c);

prove its uniform ergodicity, providing guar- if with MH sz/fep .then e
Set 6 < ¢’ with probability in

Equation

antees on the convergence rate and statisti-
cal inference.

else
5.1 Convergence | Set < 6"
on Log-Quadratic Distributions end
end

We begin with a special but fundamental case where Output: Samples {6 };
the target distribution m(#) has a log-quadratic




form:
m(0) < exp(0TWO+b70), HcO, (12)

where W € R?*4 is assumed symmetric (otherwise replace with (W+W T)/2), and b € R%. Such distributions
frequently arise in structured models, like Ising model and Gaussian graphical models.

Theorem 1. Assume the target distribution 7 is log-quadratic as in Equation[I3 Let Amin be the smallest
eigenvalue of W. Assume ag = o(a) and consider any a > 0, ag > 0. Then:

i The Markov chain defined by the proposal q(-|0) in Equation@ is reversible.

i The stationary distribution T4 o, of the chain converges weakly to ™ as « — 0. Moreover, the convergence
in L1 distance is bounded as:

1 (a + O‘O)Amin
||7To¢,a0 —7T||1 SCZ'eXp (_M_m ’

where Z is the normalizing constant of m, and ¢ = exp(agC - D/4) depends on apy and D = maxg gco |0 —
0] s -

Theorem [T] shows that the bias of cDULA vanishes exponentially as o — 0, implying asymptotic correctness.
Moreover, for any fixed o > 0 and Ay, > 0, the bound is strictly tighter than in the baseline case ag = 0
(i.e., DULA), by an additional factor of exp(— 223win) up to a mild multiplicative constant. Intuitively, the
continuous intermediates steer the state toward high-probability regions before the discrete update, reducing
the local linearization error that drives discretization bias under quadratic energies. In practice, this allows
cDULA to maintain low bias even with moderate step sizes, reducing the need for fine-tuning and more
iterations.

Figure a) illustrates the behavior of cDULA with varying stepsizes on a 2 x 2 Ising model. As expected, the
discrepancy between the stationary distribution and the target m diminishes as « decreases. Additionally,
cDULA demonstrates greater robustness compared to DULA under larger «, validating the theoretical claim
that continuous exploration mitigates bias and enables larger, more efficient steps.
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Figure 2: Verification of Theorem |[1| and (a) cDULA with varying stepsizes on 2 x 2 Ising model. (b)
cDULA on 1-d distribution with varying closeness € to being log-quadratic.

5.2 Convergence on General Distributions

We now extend the asymptotic analysis of cDULA to a broader class of target distributions. While Theorem
establishes exact convergence for log-quadratic targets, real-world energy functions often deviate from strict
quadratic forms. To handle such cases, we quantify how closely the gradient of the energy function U
approximates a linear form.



Following [Zhang et al|(2022), we assume there exists W € R%*¢, b € R?, and a small constant ¢ > 0 such
that
IVU(@) — 2WO+b)||1 <e, VIeO. (13)

This assumption states that the energy function is approximately log-quadratic in the gradient sense.

Theorem 2. Let 7 be the target distribution and 7' (6) oc exp(8T WO+b'0) be the log-quadratic approzimation
to ™ as in Equation @ Then the stationary distribution 74 o, of cDULA satisfies:

1 Amin
|70 — Tl < 2¢1(exp(cae) — 1) + Z" exp (_2a — (0‘"‘;100[)> ,

where ¢1 depends on ©' and (o, ap), co depends on © and maxg g ||0 — €' ||c, and Z’' is the normalizing
constant for w'.

This result decomposes the total bias into two parts: The first term captures how far the true energy function
U is from a quadratic form, with error scaling exponentially in €. Thus, as € — 0, the behavior of cDULA
approaches that in Theorem [I} The second term is inherited from the previous theorem and quantifies the
bias introduced by using non-zero stepsizes.

Together, these results offer practical guidance: to reduce bias, one should choose a continuous extension
whose gradient is close to linear over the discrete support ©. To validate Theorem [2] we construct a 1D
distribution of the form:

7(6) o exp (af® + b0 + 2esin(7/2))

whose gradient is VU(0) = 2af + b + emcos(fw/2). This gradient deviates from linearity in proportion
to €. As shown in Figure (b), the total variation bias of cDULA increases with larger €, consistent with
the theoretical bound. The trend closely matches that of DULA under the same perturbation, suggesting
comparable robustness in mildly non-quadratic scenarios.

5.3 Non-asymptotic Convergence

Beyond asymptotic bias, we now analyze the non-asymptotic behavior of cDMALA. Our goal is to provide
theoretical guarantees for the convergence rate and support statistical inference from finite samples. We
establish these results by proving uniform ergodicity of the Markov chain P under standard smoothness and
local concavity assumptions, which are common in the literature on optimization and sampling (Dalalyan)
2017; Bottou et al., |2018)).

Assumption 1. The energy function U(0) € C*(R) has L-Lipschitz gradient. That is
IVU(9) = VU(@)|| < L||0 — ¢']|. (14)

Assumption 2. For each § € R?, there exists an open ball containing 6 of some radius rg, denoted by
B(0,79), such that the function U(-) is mg-strongly concave in B(0,19) for some mg > 0.

Lemma 1. Let Assumptions and@ with a4+ o < % hold. Then for the Markov chain P we have, for any
0,0’ € O,

aU(6"))
010') > €n 0y —POU 15
p( ‘ ) > , Zel exp(al(0")) (15)
where
2 o+ ag)m o+ o
o =exp {2 £ = (AL Q0 e 200 gy )

Theorem 3. Under Assumptions and@ and for a + ap < %, the Markov chain P defined by cDMALA
satisfies:

i P is uniformly ergodic:
[P" = 7llry < (1= €aa0)"



16 For any real-valued test function f, the sample average satisfies:
1< d
a <n Z;f(Xi) - Mf]) = N(0,03),

for some o, > 0 as n — oo.

Theorem [3] provides two levels of theoretical guarantees for CDMALA. First, it establishes geometric ergod-
icity of the Markov chain, i.e., the total variation distance between the marginal distribution after n steps
and the target distribution decays exponentially fast. Second, the Central Limit Theorem results in Theo-
rem [3] provides an approach to perform inference on the target distribution 7 even though the asymptotic
variances are unknown, as we may perform batch-means to estimate these variances (Vats et al.; |2019)).

A key driver of this improvement lies in the modified parameter dependencies in the convergence bound.
Compared to DMALA, the convergence coefficient €, o, of CDMALA features stronger contributions from
both the gradient magnitude and the local curvature. Specifically, the gradient term is amplified by a factor
of (o + ap)/2a, which enhances the directional bias of proposals toward high-probability regions when «y is
chosen such that 0 < ap = o(a). Meanwhile, the effective curvature term becomes (a + ag)m/4a, allowing
the proposal to better exploit strong local concavity. Especially, under locally strongly concave potentials
(large m) and when moderate stepsizes « are used, the effective lower bound €, o, of CDMALA is strictly
larger than that of DMALA, which leads to faster convergence.

In summary, CDMALA is theoretically guaranteed to converge faster than DMALA whenever the target
distribution exhibits sufficient local curvature and the auxiliary parameter «q is scaled appropriately with a.
In these scenarios, the continuous intermediate acts as a curvature-aware regularizer, yielding more informed
proposals and tighter non-asymptotic bounds..

6 Experiments

For both sampling tasks and learning tasks, we compare our method to Gibbs sampling, Gibbs-with-Gradient
(GWG) (Grathwohl et al., 2021), Discrete Unadjusted Langevin Algorithm (DULA), Discrete Metropolis
Adjusted Langevin Algorithm (DMALA) (Zhang et al., |2022)), and Automatic Cyclical Scheduling (Pynadath
et al.l 2024]), which are popular and recent gradient-based discrete samplers. All methods are implemented
in Pytorch, and we use the official release of code from previous papers when possible. More experimental
details can be found in Appendix [H]

6.1 Sampling From Synthetic Distribution

To demonstrate the capability of cDLS to sample faster from the general distributions, we construct a 2-D
energy landscape as follows:

! 2
U(0) =log <Z exp ('9_2;“')) ) (16)

where © = {0,1,--- , N}?, N is the maximum value for each coordinate, and a set of modes {1, 2, , i }-
We demonstrate the results of various samplers in Figure [3] including Total Variance distance and visual-
ization. More experimental details can be found in Appendix [H.3]

The results show that DULA focuses on several given modes, and by adding continuous exploration, the
cDULA exhibits better performance. We also visualize the sampling trajectory of DULA versus cDULAE| in
Figure 3] (d) and Appendix and it can be noticed that cDULA converges to the first mode very quickly
by continuous exploration; in comparison, DULA often takes an excessively long sampling time.

2Black circles in Figure 3(d) represent continuous intermediates before discrete updates.
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Figure 3: Synthetic Distribution Sampling. We run the DULA and ¢cDULA sampler to compare how con-
tinuous exploration helps sample from the target distribution.

6.2 Sampling From Ising Models

We consider a 5 x 5 lattice Ising model, where the random variable § € —1,1¢ with d = 25. The energy
function is defined as U(#) = af T W6 + b, where W is the binary adjacency matrix of the lattice, a = 0.1
controls the connectivity strength, and b = 0.2 represents the external bias.
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Figure 4: Ising model sampling results. (a) cDULA yields the largest effective sample size (ESS) per
second and (b) achieves the lowest RMSE error among all the methods compared. (c¢)&(d)Also, our method
maintains good performance despite the different parameters of the model. More discussion is detailed in

the Appendix @

Results As seen in Figure |4, ¢cDULA significantly outperforms other methods. In Figure a), cDULA
yields the largest effective sample size (ESS) (Lenth, 2001 per second, indicating the correlation among
its samples is low due to making significant updates in each step. We compare the root-mean-square error
(RMSE) between the estimated mean and the true mean in Figure b). This shows that exploration
with continuous intermediates accelerates the convergence on this task, reaching the lowest or comparable
RMSE error. In Figure [4c)&(d), we see that cDULA significantly outperforms baseline methods in different
settings. This suggests that cDULA effectively explores the continuous space to construct more informed
proposals. These results demonstrate the ability to efficiently explore and accurately characterize modes.
Notably, ¢cDLS achieved satisfactory results even without MH correction. This may be attributed to the
proposal distribution constructed from continuous intermediates, which fully leverages geometric information
to perform well within a limited computational budget. However, for complex scenarios, such as Section
[6-4:3] which tend to diverge, MH correction provides a strict guarantee of convergence.

6.3 Sampling From Restricted Boltzmann Machines

Building upon the previous experiments on the Ising model, we further evaluate our method on a more
complex structured distribution, the Restricted Boltzmann Machine (RBM). RBMs are generative neural



networks that learn an unnormalized probability distribution over inputs, defined as

U() = > Softplus(W0 + a); + b0, (17)

where {W, a,b} denote the model parameters and 6 € {0,1}% represents the visible binary variables. Fol-
lowing |Grathwohl et al.| (2021); |Zhang et al. (2022), we initialize all samplers randomly, train the RBM
parameters {W, a,b} using contrastive divergence (Hinton , and evaluate sampling quality by com-
puting the Maximum Mean Discrepancy (MMD) between the generated samples and those produced by
Block-Gibbs sampling, which leverages the known structure of the RBM.
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Figure 5: RBM models sampling results. Our method consistently achieves competitive or superior conver-
gence across all datasets.

Results The results are shown in Figure 5} Our method, cDLS, especially cDULA, consistently achieves
competitive or superior convergence across all datasets, with notable improvements on datasets like MNIST-
like, Caltech and Omniglot. These results demonstrate the ability of the sampler to efficiently explore
and accurately characterize modes. We further include the results of the generated images and runtime
comparison in Appendix [H.5

6.4 Learning Energy-based Models

Energy-based models (EBMs) have demonstrated remarkable success across various machine learning do-
mains (LeCun et al) [2006). An EBM defines a probability distribution as

1

folz) = —=exp(—Epy()) (18)
0

where Fjp is a function parameterized by 6 and Zy is the normalizing constantEl Training EBMs typically

involves maximizing the log-likelihood,

L0) = Eompyna [log folx)] (19)

3In the general formulation, the energy function appears as exp(—8FEy(x)), where § denotes the inverse temperature. In this
work, following common practice in discrete sampling literature (Grathwohl et al.| |2021} |Zhang et al.| [2022)), we set 8 = 1 for
simplicity without loss of generality.

10



Since computing Zy directly is usually infeasible, the optimization instead relies on estimating the gradient
of the log-likelihood (Song & Kingmal, 2021)):

VL) = Eanpy [VoEo(2)] = Eonpana [VoLo(2)] - (20)

While the second expectation can be easily computed from data samples, the first requires drawing samples
from the model distribution py, which is often the computational bottleneck. Consequently, the efficiency
and quality of the sampler directly influence the training dynamics and the overall performance of EBMs.

6.4.1 Ising Models

Following (Grathwohl et al.| (2021)); [Zhang et al| (2022)), we consider a 25 x 25 Ising model and generate
data by running the Gibbs sampler. In this setting, the energy function Ey corresponds to an Ising model
parameterized by a learnable adjacency matrix W. To evaluate the quality of different samplers, we compute
the root mean squared error (RMSE) between the estimated W and the ground-truth W.

-3.8 -3.8
\ —— Gibbs —— Gibbs
-4.0 GWG -4.0 GWG
42 —— DMALA 42 —— DMALA H
—— DULA —— DULA
3’; —4.4 — ACS §—4-4 — ACS
< _46 —— cDULA(Ours) < _46 —— cDULA(Ours) _
(=2 . (=2} .
) cDMALA(Ours) o cDMALA(Ours)
—4.8 —-4.8
-5.0 -5.0
-5.2 -5.2
0 1000 2000 3000 4000 5000 0 200 400 600 800 1000 1200 1400
Iters Runtime (s)

(a) (b)

Figure 6: Ising model learning results. cDULA outperforms all baselines, finding the true W in a short time
and getting a better convergence speed.

Results Our results are summarized in Figure [f] ¢cDULA outperforms all the compared methods, having
the smallest RMSE among the baselines given the same number of iterations. Compared to the running
time, cDULA also achieves the same log-RMSE in less time, except DULA as cDULA need time to explore
the continuous space.

6.4.2 Learning RBM

We demonstrate the benefits of cDLS on RBMs. We evaluate the learned model using Annealed Importance
Sampling (AIS) (Neal, 2001). We compare the sampling methods of interest to Block-Gibbs (BG), which
utilizes the structure of RBMs well.

Table 1: Log likelihood scores for RBM learning on test data as estimated by AIS. Our method outperforms
gradient-based baselines across most datasets. ACS results are mainly taken from |Pynadath et al.| (2024]).

Dataset ‘ BG GWG DULA DMALA ACS ‘CDULA cDMALA

MNIST -208.76  -372.59  -271.17  -234.43  -249.55 | -211.24  -346.90
eMNIST | -337.90 -445.68 -312.12 -349.85  -304.96 | -289.91 -297.70
kMNIST | -347.72 -519.72 -381.27  -452.43  -407.39 | -380.12 -436.04
Fashion -307.77  -671.03  -471.35 -476.21  -452.37 | -406.30 -460.93
Omniglot | -177.83 -338.34 -180.66 -267.83 -220.71 | -190.47 -281.47
Caltech -524.84 -593.47 -538.50  -731.18 -396.04 | -390.88 -518.73
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Table 2: Log likelihood scores for EBM learning on test data as estimated by AIS. ¢cDLS is able to achieve
better results than the baselines. Previous results are mainly taken from Pynadath et al.| (2024).

Dataset | Gibbs GWG DULA DMALA ACS | ¢cDULA c¢DMALA
MNIST -117.17  -80.01  -81.20  -79.93  -79.76 | -80.42  -79.55
Dynamic MNIST | -121.19 -80.51 -80.06  -80.13  -79.70 | -79.50  -79.62
Omniglot -142.06  -94.72 -127.68 -100.08 -91.32 | -111.72  -91.01
Caltech Silhouettes | -163.50 -96.20 -114.82  -99.35  -88.34 | -102.56  -87.82

Table 3: Experiment results with binary Bayesian neural networks on different datasets.

Dataset Training Log-likelihood (1)

S Gibbs GWG DULA DMALA ACS \ cDULA cDMALA
COMPAS | -0.3102+0.0029 -0.310440.0022 -0.329540.0049 -0.3122+0.0011 -0.3163+0.0002 | -0.3431+0.0001  -0.3132+0.0033
News -0.213240.0013  -0.2121+0.0023 -0.2116+0.0013 -0.2109+0.0001  -0.2099+0.0071 | -0.2107+0.0001  -0.2098+0.0033
Adult -0.3631+0.0007  -0.3249+0.0010 -0.3051+0.0001  -0.2950+0.0042 -0.3040+0.0014 | -0.2900+0.0002  -0.3008+0.0030
Blog -0.374640.0021  -0.3247+0.0004 -0.2705+0.0023 -0.2603+0.0031 -0.2654+0.0043 | -0.2601+0.0006  -0.2607+0.0009
Dataset Test RMSE ({)

Gibbs GWG DULA DMALA ACS \ cDULA cDMALA
COMPAS | 0.4795+0.0034 0.477440.0037  0.4848+0.0013  0.477540.0029  0.475040.0039 | 0.4674+0.0029 0.478940.0036
News 0.0964+0.0022 0.0975+0.0046  0.0994+0.0011  0.0946+0.0030  0.0992+0.0099 0.0932-0.0001 0.0905+0.0009
Adult 0.4284+0.0022 0.4044+0.0004  0.3900+0.0016  0.385340.0003  0.3919+0.0072 | 0.3793+0.0002 0.3869+0.0035
Blog 0.404040.0009 0.356440.0057  0.3186+0.0037  0.3130+0.0019  0.3168+0.0030 | 0.3077-+0.0040 0.309940.0004

Results From Table[l, we note that our methods outperform the baselines on most of the datasets. Since
the structure of Omniglot is quite different from the other datasets (illustrated in Figure , it leads to
insufficiency of exploration when using the same «g. This reveals that there should be a more adaptive
approach to parameter tuning for different datasets, and we leave this for future work. We include more
discussion of these experimental settings and the generated images in Appendix

6.4.3 Learning EBM

We further evaluate our methods on deep convolutional energy-based models (EBMs) to demonstrate their ef-
ficiency in large-scale settings. In these experiments, the energy function Fy is parameterized by a ResNet (He
et all 2016)), trained using Persistent Contrastive Divergence (PCD) (Tieleman, [2008; |Tieleman & Hintonl,
2009) with a replay buffer (Du & Mordatch, [2019), following the setups of |Grathwohl et al.| (2021) and
Zhang et al.| (2022). After training, we employ Annealed Importance Sampling (AIS) to estimate the model
likelihood. Guided by the findings of [Pynadath et al. (2024), we use 10 sampling steps per training itera-
tion for all datasets, except for Caltech, where we adopt 30 steps to ensure sufficient mixing. Additional
implementation details are provided in Appendix [H.7]

Results Table [2| demonstrates that our method achieves superior performance over GWG and DLP. This
advantage comes from our sampler’s enhanced capacity to explore a broader range of modes per iteration,
which accelerates the discovery of high probability regions. Such efficient exploration directly translates
into higher-quality gradient estimates during training, driving more stable and effective model updates. It is
reasonable to hypothesize that ¢cDLS with multi-step or adaptive exploration steps will be more advantageous
in such complex experiments (Loshchilov & Hutter} 2017; |Zhang et al., |2020; [Pynadath et al., [2024)).

6.5 Binary Bayesian Neural Networks

Since MCMC-based methods are naturally suited for Bayesian inference, we further apply our approach
to Bayesian neural networks (BNNs), where sampling efficiency plays a crucial role in model performance.
Bayesian neural networks are known to provide reliable uncertainty estimation and strong predictive perfor-
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mance in deep learning (Hernandez-Lobato & Adams,2015;|Zhang et al., [2020; Liu et al.l|2021a)). Meanwhile,
binary neural networks (Courbariaux et all [2016; Rastegari et al., 2016 Liu et al.| [2021b]), in which weights
are restricted to {—1, 1}, offer significant computational and memory advantages. To combine the strengths
of both paradigms, we study binary Bayesian neural networks trained via discrete sampling. We perform
regression experiments on four UCI datasets (Dua & Graff, 2017), where the energy function is defined as

N
U) =— Z o (i) — ill3,

with D = {(x;,y;)}Y, denoting the training dataset, and fy representing a two-layer neural network with
Tanh activation and 500 hidden units.

Results From Table[3] we observe that our methods significantly outperform other gradient-based discrete
samplers on all datasets except COMPAS, as there are fewer data samples. This phenomenon could also be
found in |Zhang et al.|(2022). These results demonstrate that our methods converge fast for high-dimensional
distributions, due to the ability to explore the parameter space using gradient, and suggest that our methods
are compelling for training low-precision Bayesian neural networks where weights are discrete. Additionally,
our method shows superior generalization for data, as RMSE on test datasets is significantly decreased while
the training likelihood is almost equal.

6.6 Comparison of Variants

The primary advantage of cDULA over DULA comes from the possible regularization effect introduced
by the continuous intermediates, which allows for maintaining the comparable error with a larger stepsize
(under certain conditions, the discretization error will increase the stepsize), shown in Figure [2| (a). cDULA
achieves a significant performance gain, remaining stable even with a doubled stepsize (i.e., 0.1 — 0.2),
whereas DULA diverges quickly under the same stepsize.

When comparing cDULA and cDMALA, we observe that cDULA performs better in most of our experiments
(Figure |5, Figure @ Table . This improvement can be attributed to the absence of MH correction, which
tends to reject certain proposals and thus results in more conservative updates. For training complex EBMs,
however, this adventure action of cDULA can lead to divergence on challenging datasets (e.g., Caltech in
Table , while cDMALA remains stable and converges more reliably — this stability is the main reason
behind its strong performance. We present this trade-off between efficiency and robustness without extensive
hyperparameter tuning to emphasize the inherent characteristics of cDULA and cDMALA.

The difference between cDMALA and DMALA entirely arises from the introduction of the continuous inter-
mediates. Although MH correction in cDMALA occasionally leads to conservative updates, it still converges
faster and yields larger effective sample sizes across several experiments (Figure 5] Table [5]).

7 Conclusion

In our paper, we propose a hybrid discrete-continuous sampler for discrete spaces that extends gradient-
based updates from purely discrete settings into an augmented continuous domain. By allowing samples to
explore along gradient directions in this expanded space, our method improves the efficiency of sampling
from high-dimensional discrete distributions. For different usage scenarios, we develop several corresponding
variants, which include the unadjusted and Metropolis-Hastings adjusted versions. We prove the asymptotic
convergence of our sampler under log-quadratic and general distributions and non-asymptotic bounds for the
MH adjusted version. Numerous experiments on many different tasks show that our method outperforms the
baseline methods. As a simple and easy-to-use method, we hope that our method will improve the sampling
efficiency of discrete distributions and provide a new perspective on the utilization of gradient information.

There are still directions for further improvement of this domain. Currently, we adopt a fixed parameter o
across all datasets for simplicity in a single experiment. However, energy landscapes often vary in smoothness
and curvature, suggesting that an adaptive strategy for tuning oy could better balance exploration and
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stability across different regimes. Although our methods already outperform existing baselines, designing
more informed proposal mechanisms tailored to discrete domains remains a valuable direction, as such
proposals could leverage structural priors to guide sampling more efficiently.

Moreover, our framework relies on the differentiability of the energy function, which may limit its applicability
to certain discrete models. Relaxing this assumption or extending it to non-differentiable cases could further
broaden the scope of our approach. Finally, even under differentiable settings, the current arrangement of
discrete variables is heuristic; studying theoretical principles for optimal discrete variable organization may
reveal deeper connections between geometry and efficiency, potentially leading to more principled and faster
samplers.
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A Algorithm with Binary Variables

¢DLS could be simplified when the variable domain is binary © = {0,1}¢. We obtain Algorithm [2| from 1] to
help understand.

Algorithm 2: Discrete Langevin Samplers via Continuous Intermediates for Binary Variables
0

Input: The stepsize a, a
while True do

Compute (9mw =0+ LVU(0);
Project 6¢

exp(%VU(f)C)@u—e—eC)—%)

Compute P(6]0°) = exp(%VU(ec)@u—e—ec)—7(1*‘;;9”2)+exp(%VU(ac)@(9—ec)—L;ﬁ’f”);
Sample p ~ Unif(0,1)4;

I + dim(u < P(6|69));

0’ + flipdim([);

// Optionally, do the MH step

Compute ¢(6'/0) = []; 4i(0;10) = TT,er Po(016°) [Tig, (1 — Fi(016°))

Compute Gmw =0+ LVU(0);

Project o<

raw 7

2
exp( VU010 —6))— “"/7;“)

Construct P(6']6.) = o T
exp(3VU ()0 (10" —0)) ~ L0 Loxp(4 VU(0:)0(0'=6,)~ —H

Compute q(8]6') = [T, 4:(6:16) = [L,e; P10 Tl (1 — P(O'16L);
Set 6 < 0’ with probability in Equation

end

Output: samples{6y};

B Algorithm with Categorical Variables

When using one-hot vectors to represent categorical variables, our algorithm becomes

: 1 T (o _ pey _ 105 — 07113
Categorical | Softmax 2VU(9 ); (0, —65) 3 .
o

where 0; is the one-hot vector, 9; is the explored vector. Notably, if one-hot vectors are used, the gradient-
explored vectors should extend on the coordinate with one. That is say, Equation [7] for 6 = e, should follow
that

0° = argmin, ¢ i ||y — Oc|| = Projx (6°)

Actually, if the variables are ordinal with clear ordering information, we can also use integer representation
0e{0,1--- K- l}d and follow Equation@ Equationﬁ]and Equationto sample from discrete distributions.

C Necessity of the Projection

One direct method is without Equation [7] That is, the sample has explored its domain by gradient, then
updates according to the extended continuous sample. However, it may meet some obstacles and be beyond
the sample domain, which will result in a very low acceptance probability in practice. For example, in the
RBM experiment, its acceptance probability is 0.001% while cDMALA’s acceptance probability is 62% on
average. We use a simple illustration in Figure
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D Accelerating Other Gradient-Based Samplers via Continuous Intermediates

In the main text, we primarily focus on discrete Langevin samplers. In this section, we extend our framework
to demonstrate how continuous intermediates can also accelerate other gradient-based discrete samplers.

Recall that in |Grathwohl et al.| (2021)), Gibbs with Gradients (GWG) updates samples through several
coordinate-wise steps. For simplicity, we consider the case of binary variables.

Algorithm 3: Gibbs With Gradients for Binary Variables

Input: energy function U(-), current sample 6
while True do
Compute d(f) = —(20 — 1) © VU(0);

Compute ¢(i|f) = Categorical (Softmax (CZ(;)));

Sample i ~ ¢(i]0);
0’ = flipdim(6,1);

Compute ¢(i|f") = Categorical (Softmax (‘2(3/)»;
Accept with probability:;
min (exp(U(Q’) — U(6)) L) 1);

q(i[0) 2

end
Output: samples{6;};

When computing J(G), introducing a continuous intermediate enables the sampler to construct a more
informed proposal. Specifically, we replace this step with

6° = Proj (0 + 2VU(6)) = argmin |y — 0 — “2VU(6)]. (21)
2 yeK 2

We refer to this variant as Gibbs with Gradients via Continuous intermediates (cGWG) and simply evaluate
it on Restricted Boltzmann Machines (RBMs). Although ¢cGWG updates only a single coordinate at each
step, similar to the original GWG, it achieves consistently better performance, highlighting the effectiveness
of incorporating continuous intermediates.

— GWG
-38 —
CGWG A GWG

A _40 GWG
-4.0 /
_a2 f -4.2
-4.4 f -44
|

0 1000 2000 3000 4000 5000 0 10 20 30 40
Steps Time (s)

(a) Log-MMD vs. Step (b) Log-MMD vs. Time

Figure 7: RBM Sampling for GWG and cGWG.
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E Proof of Theorem [1]
0, =0+ %VU(G)

: , 1 T gy 107 =03
0" ~ Categorical | Softmax 2VU (6.) (0" —6.) 5
a

Expand the terms, we get

= VUO)(# ~6) - W VUG~ 5TV + S2VU0) W 0
_@ ;_QQOVU(G)T(G' —0) - w + %VU(G)TWUWW —9)

= Bvue) (0 - 0) - w + VIO (VU@) - VU 6)

ey ;FaaovU(e)T(e' —6) - W + %VU(H)T(VU(H’))

Here, * means we drop some terms that won’t affect the softmax result, i.e, not relevant to 6’. Recall that
the target distribution is 7(0) = exp(§ "W + b70)/Z. We have that VU (0) = 2W "0 + b, V2U(9) = 2W.
Since V2U (#) is a constant, we can rewrite the proposal distribution as the following:

exp (2200 (6) (6 — 0) — L5 4 vu(6)T(VU(9)
S exp (%w(e)ws Sy el %VU(G)WVU(x)))

_exp (M2 U(0) - U®) — (0 — )T (551 + 2522W)(0' — 0) + 22VU(0) T (VU(0')))

TS e (B (U) - U6) (2 0) (&1 + G W)@~ 0) + LVU(6) (VU ()

Qo0 (9/‘9) =

Let Zoao(0) = 3, exp (%(U(CL‘) —-U(9) — (x — 9)T(il + %W)(m —-0)+ %VU(G)T(VU(:E))), and
Ta,00 = %, now we will show that gq,q, is reversible w.r.t m, o,. To simplify the notation, we
a,a0 ()T (T

use & to take place (a, ayp).

We have that

_ Z&(0)m(6) _exp (%(U(Q’) -U(®) — (6" — H)T(il + %W)(G' —0)+ %VU(G)T(VU(G’)))
> Za(x)m () Za
_exp (FU) + 2520U(0) — (0 = 0) (g1 + 2520W)(0' = 0) + L VU(9) T (VU(#)))
Z- 3, Za(x)m(x)

WaQ&(e/W)

Only and only if ag = o(a), it is clear that this expression is symmetric in 6 and 6’. Therefore g4 is reversible
and the stationary distribution is 7.

Now we will prove that 75 converges weakly to 7 as a, ag — 0 (a9 = o(«x)). Notice that for any 6,

2a(0) = S exp (“5 2 U@) - V) — (0= 0) (T + S5 LW - )+ FIVO) (V) )

= > exp @(U(x) - U(e))> do ()

=1.
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where dyp(z) is a Dirac delta. Due to Z5(6) is a continuous function when 6 is fixed on A = {a > 0, 9 > 0},
so the limitation is well-defined. It follows that 74 converges pointwisely to 7(#). By Scheffe’s Lemma, we
attain w5 converges weakly to .

Convergence Rate w.r.t Stepsize Let us consider the convergence rate in terms of Li-norm.
Z(0)m(0)
I =l =3 ~ (o).
° 2|5 Zatr@

We write out each absolute value term

Zs(0)m(0) Z&(0)
—_— —70)| =7(0) | == — 1
Y, Za(@)m(x) >, Za(@)m(x) ’
LD xP(PEEL (U ) = U@) = (& = )T (g5 1+ “5Z0W) (@ —0) + L YUO) T (VU () — VU(©))
=(0) -
LY FexpU®) Y, exp(UFZ0(U) = U0) — (@ = 0)T (G5 1+ “F20W)(@ — 0) + L VU(O) T (VU(2) — VU(0)))
a+tag

where & = . Since Apin(W)||z||? < 2T Wa,Va, it follows that

2a

+ (Ot + O‘O)Amin

W)~ 6) > o - o2 (- 0 EE

)

We also notice that min, g |z — 0[] = 1, and

IVU©O) (VU (2) = VU @)l = [@W "0+ )T @W T (z — 0)||2 < Cllz — ]| = CD

(z)m(x)

where D = maxg g co ||0' — 0],,. Thus when s Z(x(@) —1>0, we get

Za(8)m(9) Za(9)
_ —70)| =7(f) | =——————— — 1
>, Za(a)n() >, Za(@)m(@) ’
L0, (g (U@) = U0) = (2= 0) T (g ] + S22 W) (@ — 0) + 2 VU 0) T (VU (x) — YU(9))
B L) FemUm) Y] | exp(TGRe (U) —UW) — (@ = 9) T (ge ] + “3528W) (@ —9) + L YU T (VU(2) ~ VU(y))
1 o+« @
< (o) <1 + ) eI W) — U0 - (o1 + W) le - 6 + S2VU0) T (VUG) - VU©) - 1>
T#0

o+ ap)Amin
< (0) <czcxpw<z>>> Cexp (—%)

x
14 (a4 @0)Amin

=c-7(0)Z - exp(772a )
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04(9)

@) 1 < 0, we have,

where ¢ = exp(“2CD) is a constant. Similarly, when S 7.

Z5(8)7(9)
>, Za(a)m(@)

L4 D7 exp(UFZ2 (U) = U(0) = (2 = 0)T (51 + 20 W) (@ — 0) + L VUO) T (VU(2) — VU(6)))
= 7(0)
YU(y)))

- m(0) =
LY FenU@) Y, | exp(P520 (U) —UW) — (x = 9)T (g5 + SFZ0W) (@ —y) + L VUW) T (VU(2) -

1

<m@) | 1- a+(y0 _ 1I+(atag)dmin
L) FewU®) ), ecexp( (U(z) — U(9)) Su )

( S, B e Y, cexp(SH2L(Uw) - U(e) - H2E50Amin) )
= n(0) -

LY U@y, coxp(S520(WU@) - U(0)) — S50 min

< (o) (Z ~ ep(U) Y conn(CEX (U2 - U<e>>>> exp QW)

Y TFY

< 7 (0) <CZ exp(U(z))) - exp (771 +le ZzO)X"Li” )

x
1+ (a4 @0)Amin

=c-7(0)Z - exp(—#)

Therefore, the difference between 75z and 7 can be bounded as follows.

||7rd_7r||§620:7r(9)z.exp<_ +(a4;0fjéo) )—cZ«exp(— +(oz4;;zo) >

F Proof of Theorem

Proof We use a log-quadratic distribution that is close to 7 as an intermediate term to bound the bias of
cDULA. Recall that 7 is the target distribution, 7 is the log-quadratic distribution that is close to 7 and
T4 is the stationary distribution of cDULA. We let 7r:i be the stationary distributions of cDULA targetting
7r', then by triangle inequality,

Ima — 7l < llma — 75l + llms — 7'l + 17" = =l
Bound of |7/ — 7||;. Let the energy function of 7’ be V() = 0T W@ + b"6. Since © is a discrete space,
there exists a bounded subset © € R? such that © is a subset of 2. By Poincaré inequality, we get
U@O) =V ()| <Cr-|[|[VU@O) — (WO +D)||; < Cie, Vo € ©
where the constant C7 depends on Q.

Recall that 7(6) = w. Let 7'(0) = eXp(Zw where Z’ is the normalizing constant to make 7’ a
distribution. Then

exp(U(0)) _ exp(V(0))
A A '

lr =l =)

0€O

(22)

We notice that V0,

exp(U(0))
(V@) ~ “PWU ) = V(6) < exp(|U(8) = V(6)]) < exp(Ce),
and similarly
RVO) _
exp(U(6)) ~ '
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Therefore we have V0,

Z A

exp(U(9)) exp(V(Q))‘ _
Z -7

exp(U(0)) - Z' — exp(V (9)) - Z‘

< (exp(2Ce) — 1) min{

exp(U(0)) | exp(V())
< (exp(2Ce) — 1) ( 7 + 7/ ) :

exp(U(0)) exp(V(0)) }
A ’ A

Plugging the above in Equation equation 22} we obtain

I — '], < 2 (exp(20€) - 1).

Bound of |7} — 7'||;. By Theorem 1} we know

Iy — 'l < 2" - exp (— ot )

Bound of |75 — 75[|;- Now we will bound ||7s — 75||; by perturbation bounds. Let T, T% be the transi-
tion matrices of GEDLS on 7w and 7’ respectively. We consider the difference between these two matrices.

e’ e’

—912 _an2
exp (“%vwme' —g) - L0l %Ovvwf(w(e/))) exp (ﬂvvwme’ —o) = 105 sagvie)T(vV(e!

2a

|7 — 7 Lo:m:‘xz Za(0) N Z7.(0)
0/
where
_ a+ag T _ oy _ ||9/—9||% @o T /
Za(0) = ;exp ( o VUO) (0= 0) - =2+ 2VU0) (VU () ),
’ _ a+ag Trio _ pn) _ ”0/_0”% Qo T /
Z'(0) = %:exp ( e VYO (0= 0) = =2+ VvV (O)(VV(Y) ).

We denote D = maxg gco ||6 — 0],. By the assumption |[VU(0) — VV(0)|, < €, we get

exp (VU(0)TVU (') — VV(0)'VV(0') <exp ([VU(O)TVU®') — VV(0)'VV(0)])
=exp (|VU(0)'VU(®) —VU®) V(') +VU@®) V() - VV(©O) VV(©)|)
<exp (|VU(O)'VU(O)—VU@O) V()| +|VUO) V() - VV () VV()|)
< exp(Me)

/

<

where M = 2maxy{|VV(0)|}. It gets from

VU ()| = |[VU(0) — VV(0) + VV(0)] < Cre + |[VV(0)].
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Similar to Equation equation [23] we have

exp (‘*230 vUe) (e -0y~ W3 %’VU(@)WU(e'») exp (%vvwme' —gy - Mo %vvwf(vwe')))

Za(9) Z;,(9)

< (exp (Ne) — 1)

exp (%ww)w S Ll %ﬂvweﬁww’))) exp (“;ﬂvvwﬂe' gy L0E %vvwﬂvvw')))

«
- min

Za(0) ' Z4,(9)

< (exp (Ne) — 1)

exp (%;‘OVU(Q)T(W _gy Mo | %VU(Q)T(VU(Q’))) exp (“;%VV(Q)T(Q/ _gy M-of | %vvwfwvw'n)

Za(0) * 77.(0)

where N = %D + % Now we substitute it to HTa — TQHOO,

|T— T, <2(exp(Ne)—1).

By the perturbation bound in [Schweitzer| (1968)),
Ima —75lly < C2 - 1Ta — Tillo = 2C2 (exp (Ne) — 1)

where Cs is a constant depending on 7’ and @&. Please note that it is also possible to use other perturbation
bounds (Cho & Meyer} [2001)).

Combining these three bounds, we get
I = 7lly <l = o lly + llm = 7'l + 7" = =l

1 + (Oé + ao))\mm
2c0

<205 (exp (Ne) — 1) +c¢Z’ - exp ( > + 2 (exp(2C1e) — 1).

We define ¢; := 2max(2,2C3) and ¢y := max(2Cy, N), then we reach the the final result

Ima = mlly < llma = molly + e, — 7'l + 7" — 7l
1 —+ (a —+ aO))\min>

< 2c; - (exp (co€) — 1) + Z' - exp ( 5
a

G Proof of Lemma [1 and Theorem 3

Proof. Recalling cDLS, we consider the proposal kernel as

_le—e|?

qa(0'10) o< exp {aVU(a)T(a' —0) 5o

n %(VU(HC) —VU@)" (0 - 9)}

and consider the transition kernel as

7(0")qa(010")
(0)qa(6'10)

where 09(60') is the Kronecker delta function and L(6) is the total acceptable probability from the point 6

with
L {700 Y
=t o R

p(0']6) = min{ ,1} 4a(0'10) + (1 — L(6))39(6")
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We also define

Zs(0) =) exp {dVU(G)T(x —0) —

€O

lz — 0% 1

S 5TV - TU0) (@ - 0)

which is the normalizing constant for the proposal kernel.

Consider the term,
1
dVU(@)T(G’—G)—%HG—G’HQ:&(—U(9)+U(9'))—7(9 ') ( / V2U[(1 — 5)0 + s0']ds + I> 0—0.
From Assumption [T} we have
! 1 1
a/ V2U[(1 = )0+ s0')ds + ~1 > (= — aL)T.
0 Q Q

Since a + ap < 7, the matrix (L —aL)I is positive define. We denote that

7;((9)% 921)’} a(0'16) + (1 — L(6))4(¢")

min
>m n{”“")‘] "“">, }qd<9'|e>
win{ -t

p(0')0) =

. /
Za(0) oxpl fLDIIVU(G)II)’ }q“(a 1)

where Z5 could also be rewritten as

Zs(0) = Z exp {&VU(G)T(x —0)— % %(VU(@C) vU(@) " (z — 9)}
€O
1
=Y e { )+ Ux)) — 7(9 _T (a/ V2U[(1 — )0 + salds + 11) 0 —) + %(VU(GC) —VU©O) (2 — 9)}
€O 0 @

This can be seen as

"0 010) = 777

1

exp {a(U(e) +U(®#")) - %(9 -7 (cx/ V2U[(1 — )8 + s8']ds + ;I) 6—6")+ - (VU(OC) VU)o - 9)} .

0
Since Assumption [2| holds true in this setting, we have an m > 0 such that for any 6 € conv(©)

~V2U(0) > ml.
From this, one notes that
1,1
exp (—dU(G) — 5(5 —am)D? + %L VU(H)H) Z exp(aU(z)) < Z5(0) < exp(—dU(9)+ OLD||VU (6 ) Z exp(aU (z)
€O €O

where the right-hand side follows from the fact that o + a9 < % Therefore,

Za(0) _ exp{a(=U(0) + U(9")} - exp{PL[VU©)]}
Za(0") ~ exp{5(; — am)D?} - exp{ L LD VU (9]}

Also note that

exp {a(-U(0) + U©) ~ 56— 00T (& f, T2UL1 - )0 + s0')ds + L1) 0~ 6+ H(VU(6) - TUO)T O - 6)}
46 (6/]6) =

Zm@@ exp {d(fU(G) +U(x)— 20 —2)T (& fol V2U[(1 — s)0 + sx]ds + é]) (0—x)+ $(VU(0:) = VU(O)T (z — 9)}

cxp{avv(e>T(9'—9> L—0"1® | 1(vu(.) — vU(©)T (¢ —9>}
>
= exp(—aU(0) + 3LD?) )" exp(al(z))
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and

lo—o 1

—avu(@e) T (o' —0)+ — Z(VU(e) = VU(O) T (0" — 0) =a(—=VU(0) + VU (a)) T (0’ —0) — VU(a)T (¢’ — 0)
2a 2

_p'2 1
=0 L Qv - vue)T@ - o)
2c 2
1
<&||VU(a) = VU@)|| D + &||[VU(a)|| D + ;DQ
(0%
1 1
< (aL + 2—)1:)2 +&||VU(a)|| D + 5LD2
o

Combining the inequities, we get
exp{aU(¢')}

9/ 0) > €a =
PO) 2 e o GU )
where 1 ~
€ = exp {—(a +al+L— ?)92 — & |VU(a)| D}

To simplify, it also could be bound with a + ap < %,

€5 = exp {—(i +al+L— %)m —&|VU(a)| D}

1
> exp {(a + TL + L — —)D2 —a||VU(a)|| D}

— exp {—(i L= Y2 G vU(a)| D} .

As for Theorem [3| the proof directly follows from Lemma |1} and Cor.5 in (2004]).

H Additional Experiments Results and Setting Details
H.1 Hyperparameter Settings
The key hyperparameters used for the compared methods are summarized as follows:

Table 4: Hyperparameter settings for all experiments.

Sampler ‘ GWG DULA DMALA ACS cDULA cDMALA
Table 1. General setup

Hyperparameter ‘ - a a [Bmin, Bmax] o, Qg o, g

Table 2. Ising sample

Hyperparameter ‘ - 0.2 0.4 [0.5, 0.95] 0.4, 0.2 0.4, 0.2
Table 3. RBM sample and learning

Hyperparameter ‘ - 0.1 0.2 [0.5, 0.95] 0.2, 0.04 0.2, 0.04
Table 4. Ising learning

Hyperparameter ‘ - 0.1 0.2 [0.5, 0.95] 0.2, 0.01 0.2, 0.01
Table 5. EBM learning

Hyperparameter ‘ - 0.1 0.15 [0.5,0.95] 0.15,0.01 0.15, 0.01
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We briefly introduce the hyperparameters used in different methods. GWG requires no additional hy-
perparameters, as it follows the Gibbs principle by updating one coordinate at a time based on gradient
information. The parameter « in DLP and cDLS denotes the stepsize, analogous to that in continuous
Langevin algorithms: a larger « leads to higher discretization error and potential divergence, whereas a
smaller a results in more stable updates but requires more iterations for convergence. The parameter /3
in ACS serves as a balancing parameter, where a cyclical schedule is employed to generate a sequence of
{Br}. Correspondingly, a heuristic procedure is used to determine the associated stepsizes {«ay}. Further
implementation details can be found in [Pynadath et al.| (2024)). The g in ¢DLS controls the magnitude of
exploration and is typically set not to exceed «.

H.2 Ising Model For Theory Verification

To verify Theorem [I, we use a 2 by 2 Ising model U() = af " W6 + b where W is the binary adjacency
matrix and a = 0.1,b = 0.2. To verify Theorem [2| we set a =1 and b = 0.1.

H.3 Sampling from Synthetic Distribution

We use the experiment setting of Pynadath et al|(2024). We need to define the space between the modes,
the total number of modes, and the variance of each mode o. For convenience, we take the same mode
number in |Pynadath et al.| (2024), the space between modes as 15, and the variance for each mode o2 as .3.
Based on this, we can calculate the maximum value for each coordinate as follows:

MazVal = (VNumModes + 1) * Space BetweenModes.

The mode’s center could be calculated as follows:

o MazxVal (i+1)
Had vV NumModes + 2
MaxVal .
(J+1)

Hig = vVNumModes + 2

Y¢ Modes
"3‘%’ Start ® . o 1 . o e
® Y e End oK dp fe Wl da ol g Ko ok
DULA . o °
* Kk ¢ DU ¥ %k w8 & AN N AT
o CDULA o e . ® ° ! s
o AL cDULA . N o * o .
féﬂag » hed o ~ Y ModesA‘? i}. q)% "’%’ o« S ¥ ¥’ Y¢ Modes
o) . Start ® Start
B i S g ® Ed X & % ¥ k¢ % End
¥ . o DULA . DULA
o DULA o DULA
7%; Wk w X . ouat X K 13 K W e cDULA
cDULA cDULA

Figure 8: Sampling Trajectory with different random seeds.

H.4 Sampling from Ising Models

We adopt the experiment setting of [Zhang et al| (2022)). The energy of the Ising model is defined as,

log(p(z)) =az' Jr+b'x
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where a controls the connectivity strength and J is an adjacency matrix whose elements are either 0 or
1. If J = 0, then the model becomes a factorized Bernoulli distribution. In our experiments, J is the
adjacency matrix of a 2D lattice graph. cDULA and cDMALA use the same stepsize tuple (0.4,0.2). We run
all methods for the same number of iterations. The results are shown in Figure [4f We can clearly observe
that our methods outperform other baselines on all connectivity strengths. These three coupling strengths
respectively correspond to real scenarios within the Ising model dominated by a strong external field, strong
internal interactions, and the absence of an external field.
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Figure 9: Generated samples from an RBM trained on MNIST. Our methods generate images that are closer
to ground-truth samples.

H.5 Sampling from RBMs

RBM Overview We will give a brief overview of the Blocks-Gibbs sampler used to represent the ground
truth of the RBM distribution. For a more in-depth explanation, see |Grathwohl et al.| (2021). Given the
hidden units h and the sample z, we define the RBM distribution as follows:

log(p(x,h)) =h Wz +b"x+c' —log(2) (24)

where Z is the normalizing constant for the distribution. The sample z is represented by the visible layer
with units corresponding to the sample space dimension, and h represents the model capacity. It can be
shown that the marginal distributions are as follows:

p(z|h) = BernoulliWz + ¢)
p(hlz) = Bernoulli(W " h + b)
log(p(z)) = Z Softplus(Wz +a); +b"x —log(2).
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The Block-Gibbs sampler updates x and h alternatively, allowing for many of the coordinates to get changes
at the same time, due to utilizing the specific structure of the RBM model.

Experiment Setup Similar to the experimental setup of |Zhang et al.| (2022); Pynadath et al.| (2024)), we
use RBM models with 500 hidden units and 784 visible units. We adopt the same training protocol, except
that we fine-tune the learning rate of Omniglot. From simpler MNIST-like data sets, we only train for a
single pass through the dataset, while for more complicated datasets, we train for 3000 iterations to better
represent the character and generate more realistic samplers. We include the generated images in Figure [[2]
to demonstrate that these models have learned the dataset reasonably well.

Sampler Configuration For GWG, we use the same setting as |Grathwohl et al.| (2021). For DLP, we set
the stepsize to 0.2 and 0.1 alternatively with MH correction and without MH correction. For ¢cDLS, we use
a= 0.2, a9 =0.04.

Sampling Speed While the run time can vary depending on the specific implementation of a given
sampling algorithm, we illustrate the efficiency of ¢cDULA in Figure [I0] ¢DULA is able to capture the
efficiency of DMALA without Metropolis-Hastings correction, which significantly improves the convergence
speed and generates more diverse samples.

Effective sample size We find that the continuous exploration allows us to get closer to the high prob-
ability region before discrete sampling, allowing for larger steps of ¢cDLS. In addition to accelerating the
speed of convergence of the distribution, another significant benefit is the improvement in effective sample
size (ESS). We run 100 chains in parallel with 5,000 iterations. Table [5| shows the ESS of the sampling of
the RBM model, and it can be seen that our approach significantly improves the effective sample size.

Table 5: Effective sample size for RBM sampling. Our method outperforms gradient-based baselines across
all datasets.

Dataset \ GWG DULA DMALA ACS cDULA cDMALA

MNIST 151.224553.28  397.86+1051.08 676.07+1269.37  878.55+768.21 | 1948.68+1868.10 989.63+1518.10
eMNIST | 143.494513.91  312.11+939.11 262.66+755.76  478.32+372.79 | 1305.44+1802.20 587.28+1088.37
KMNIST | 143.08+554.69 381.70+1023.72 518.35+1059.64  799.86+873.49 | 1601.81+1829.77 721.82+1218.88
Fashion 43.76+159.14 184.00+630.67  711.49+1232.28 977.23+1029.32 | 1357.86+1555.12  781.11+1387.46
Caltech 123.20+446.86  222.62+703.02  501.88+796.30  789.21+891.79 860.05+862.92 705.364932.25
Omniglot | 83.33+288.10  101.73+524.26  428.524982.70  573.49+807.91 | 709.58+1395.64  504.40+1104.62

Table 6: Improvement on average acceptance probability.

Dataset DMALA c¢DMALA ‘ Dataset DMALA c¢DMALA
MNIST 0.5307 0.6595 Fashion 0.5752 0.7025
eMNIST 0.5415 0.6706 Caltech 0.5339 0.7095
kMNIST 0.5307 0.6595 Omniglot 0.7430 0.8191

H.6 Learning RBMs

Experiment Design Follow Pynadath et al| (2024]), We use the same RBM structure as the sampling
task, with 500 hidden units and 784 visible units. However, we apply the samplers of interest to the PCD
algorithm introduced by Tieleman| (2008). The model parameters are tuned via the Adam optimizer Kingma,
& Bay (2015)) with a learning rate of .001.
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Figure 12: Images generated from RBMs trained by Constactive-Divergence with Block-Gibbs. Top to
Bottom: eMNIST, kMNIST, Fashion, Caltech, Omniglot; Left to right: GWG, DULA, DMALA, ACS,
cDULA and cDMALA.

H.7 Learning EBMs

For all the experiments in this section, we use the stepsize a to be 0.1 for cDULA and 0.15 for cDMALA,
ag to be 0.01 for the two.

Ising Model We construct a training dataset of 2,000 instances by running 1,000,000 steps of Gibbs
sampling for each instance. The model is trained by Persistent Constastive Divergence |Tieleman| (2008)
with a buffer size of 256 samples. We also use the Adam optimizer with a learning rate of 0.001. The
batchsize is 256. We train all models with an [; penalty with a penalty coefficient of 0.01 to encourage
sparsity. The experiment setting is basically the same as |Grathwohl et al.| (2021); Zhang et al.| (2022).

Deep EBMs We use the same EBM model architecture as |Grathwohl et al.| (2021); |Zhang et al.| (2022)
and follow the same experimental design, where we implement ResNet with 8 residual blocks of 64 feature
maps. We evaluate the models every 5,000 iterations by running AIS for 10, 000 steps. The reported results
are from the model that performs the best on the validation set. The final reported numbers are generated
by running 300, 000 iterations of AIS. All the models are trained with Adam with a learning rate of 0.0001
for 50, 000 iterations. We show the generated images with cDULA and cDMALA in Figure
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H.8 Binary Bayesian Neural Networks

Details of the Datasets (1) COMPAS: COMPAS |J. Angwin & Kirchner| (2016) is a dataset containing
the criminal records of 6,172 individuals arrested in Florida. The task is to predict whether the individual
will commit a crime again in 2 years. We use 13 attributes for prediction. (2) News: Online News Popularity
Data Set E| contains 39,797 instances of the statistics on the articles published by a website. The task is
to predict the number of clicks in several hours after the articles are published. (3) Adult: Adult Income
Dataset E| is a dataset containing the information of US individuals from the 1994 census. The prediction
task is to predict whether an individual makes more than 50K dollars per year. The dataset contains 44,920
data points. (4) Blog: Blog Feedback Buza, (2014)) is a dataset containing 54,270 data points from blog posts.
The raw HTML documents of the blog posts were crawled and processed. The prediction task associated
with the data is the prediction of the number of comments in the upcoming 24 hours. The feature of the
dataset has 276 dimensions.

Details on Training We run 10 chains in parallel and collect the samples at the end of training. All
datasets are randomly partitioned into 80% for training and 20% for testing. The features and the predictive
targets are normalized to (0,1). We set o = 0.1, g = 0.01 for all datasets. We use a uniform prior over the
weights. We train the Bayesian neural network for 2,000 steps. We use the full-batch training for the results
in Section [6] so that Gibbs, GWG and DLP are also applicable. Beyond this, we could also get a stochastic
variant for cDLS.

4https://archive.ics.uci.edu/ml/datasets/online+news+popularity
Shttps://archive.ics.uci.edu/ml/datasets/adult
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