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ABSTRACT

We employ multiple classic clustering models to the dataset MNIST and visualize their clustering
results.To further optimize the clustering performance performance regarding our dataset, we combine
two different manifold learning methods with GMM model for the final clustering algorithm. The
idea of the above algorithm(N2D) was put forward by Ryan McConville et al.(2020).

Keywords Clustering ·Machine Learning · Dimension Reduction

1 Introduction

Clustering is a fundamental technique used in data analysis to group similar objects together based on their inherent
characteristics. In unsupervised learning, the labeled information of the training samples is unknown, and the purpose
of clustering learning is to learn from the unlabeled samples to reveal the intrinsic nature and regularity of the data,
and provide a basis for further data analysis. It is based on similarity, i.e. in a cluster There is more similarity between
patterns than between patterns that are not in the same cluster.

Clustering attempts to divide the samples in the data set into several usually non-intersecting subsets, each subset is
called a "cluster". It should be noted that these concepts are unknown in advance for the clustering algorithm, and the
clustering process automatically form the cluster structure, and the conceptual semantics corresponding to the cluster
need to be grasped and named by the user.

Clustering can be used as a separate process to find the internal distribution structure of data, and can also be used as a
precursor to other learning tasks such as classification. For example, in some commercial applications, it is necessary to
identify the type of new users, but defining "user type" may not be easy for merchants. At this time, it is often possible
to cluster user data first, define each cluster as a class according to the cluster results, and then practice classification
models based on these classes used to identify the type of new users.

Based on learning strategies, people have designed many types of clustering algorithms, like K-means Clustering, Fuzzy
C-means Clustering etc. In this paper, we focus on K-Means Clustering,Mixture of Gaussian(GMM), and Density
Peaks Clustering(DPC), applying them to the MINIST dataset. To achieve data visualization, we also introduce some
basic dimensionality reduction algorithms for our datasets.

It’s also notable that in this paper, we make a few improvements to the classic GMM model based on the algorithm
proposed by Ryan McConville et al.(2020), combining the model with two different manifold learning methods to
optimize the clustering performance.
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This article is organized as follows: Section 2 explains three clustering models investigated in our study including their
algorithms. Section 3 introduces two approaches to reduce dimentions. Section 4 gives out a brief introduction of the
data set and reveals the experimental results and discussion. Section 5 presents the optimized clustering algorithm
and the testing result of it based on the same dataset. Section 6 briefly summarized the experimental results of our
work. Section 7 is dedicated to our critical reflections throughout the process of conducting this report. The rest part is
references.

2 Clustering Models

2.1 K-Means

The k-means algorithm is a well-known prototype clustering algorithm, which minimizes the squared error for the
resulting cluster division C = {C1, C2, ..., Ck}. Intuitively, Equation 1 depicts the closeness of the samples within the
cluster around the mean vector, and the smaller the E value, the higher the similarity of the samples within the cluster.

E =

k∑
i=1

∑
x∈Ci

||x− µi||22 (1)

The greedy strategy is used to minimize 1, and the solution method is approximated through iterative optimization. The
algorithm[1] process is as follows:

Algorithm 1 K-Means

Input: Sample set D = {x1, ..., xm};
Number k.

Output:
1: Initialize k mean-vectors{µ1, ..., µk}selected from D randomly.
2: repeat
3: set Ci = ∅(1 ≤ i ≤ k)
4: for j = 1,2,...,m do
5: Compute distance: dij = ||xj − µi||2 (1 ≤ i ≤ k);
6: Ensure the label: λj = argmini∈{1,...,k} dji;
7: Assign{xj} to the appropriate clusters: Cλj

= Cλj

⋃
{xj};

8: end for
9: for i = 1,...,k do

10: Compute the new mean-vector: µ′
i =

1
|Ci|

∑
x∈Ci

x;
11: if µ′

i ̸= µi then
12: µi ← µ′

i
13: else
14: remain µi

15: end if
16: end for
17: until NO RENEW
18: return C = {C1, ..., Ck}

2.2 Mixture of Gaussian(GMM)

Unlike k-means, which uses prototype vectors to describe the clustering structure, Gaussian mixed clustering uses a
probabilistic model to express clustering prototypes.We can define a Gaussian mixed distribution

pM(x) =

k∑
i=1

αi · p(x|µi,Σi) (2)

The distribution consists of k mixed components, each of which corresponds to a normal distribution.µi,Σi are the
parameters of the ith mixed component, and αi > 0 is called mixture coefficient,

∑k
i=1 αi = 1.
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For 2, the model parameters are estimated with maximum likelihood, i.e., maximized (logarithmic) likelihood, and the
EM algorithm is often used to solve the problem iteratively. We omit the detailed derivation proof of the algorithm,
which is described as follows:

γji = pM(zj = i|x) = αi · p(xj|µi,Σi)∑k
l=1 αl · p(xj|µl,Σl)

(3)

Algorithm 2 GMM

Input: Sample set D = {x1, ..., xm};
Number k.

Output:
1: Initialize parameters{(αi,µi,Σi)|1 ≤ i ≤ k}
2: repeat
3: for j = 1,2,...,m do
4: Compute posterior probability by 3:γji = pM(zj = i|x);
5: end for
6: for i = 1,2,...,k do
7: Compute new mean vector: µ′

i =
∑m

j=1 γjixj∑m
j=1 γji

;

8: Compute new covariance matrix: Σ′
i =

∑m
j=1 γji(xj−µ′

i)(xj−µ′
i)

T∑m
j=1 γji

;

9: Compute new mixture coefficient:α′
j =

∑m
j=1 γji

m ;
10: end for
11: Renew parameters:
12: µi ← µ′

i,Σi ← Σ′
i, αj ← α′

i
13: until The stop condition is met
14: Ci = ∅(1 ≤ i ≤ k)
15: for j = 1,...,m do
16: Ensure the label: λj = argmaxi∈{1,2,...,k} γji;
17: Assign{xj} to the appropriate clusters: Cλj

= Cλj

⋃
{xj}

18: end for
19: return C = {C1, ..., Ck}

In each iteration, the posterior probabilityγji that each sample belongs to each Gaussian component is calculated based
on the current parameters(E Step), and the model parameters are updated based on the maximum likelihood estimate(M
Step).

2.3 Density Peaks Clustering[8]

Similar to the K-medoids method, it has its basis only in the distance between data points. Like DBSCAN and the
mean-shift method, it is able to detect nonspherical clusters and to automatically find the correct number of clusters.
The cluster centers are defined, as in the mean-shift method, as local maxima in the density of data points. However,
unlike the mean-shift method, our procedure does not require embedding the data in a vector space and maximizing
explicitly the density field for each data point.

The algorithm has its basis in the assumptions that cluster centers are surrounded by neighbors with lower local density
and that they are at a relatively large distance from any points with a higher local density. For each data point i, we
compute two quantities: its local density ρi and its distance δi from points of higher density. Both these quantities
depend only on the distances dij between data points, which are assumed to satisfy the triangular inequality. The local
density ρi of data point i is defined as

ρi =
∑
j

χ(dij − dc) (4)

where χ(x) = 1ifx < 0 and χ(x) = 0otherwise, and dc is a cutoff distance. The algorithm is sensitive only to the
relative magnitude of ρi in different points, implying that, for large data sets, the results of the analysis are robust with
respect to the choice of dc.

δi is measured by computing the minimum distance between the point i and any other point with higher density:
δi = min

j:ρj>ρi

(dij) (5)

3
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For the point with highest density, we take δi = maxj(dij). Note that δi is much larger than the typical nearest neighbor
distance only for points that are local or global maxima in the density. Thus, cluster centers are recognized as points
for which the value of δi is anomalously large.

This observation, which is the core of the algorithm.We will look for them through the Decision Plot and, of course, if
the Decision Plot is not obvious, the decision values γi = ρi × δi, can also be considered.

Algorithm 3 DPC

Input: Sample set D = {x1, ..., xm};
Output:
1: Ensure the cutoff distance : dc;
2: for i,j = 1,2,...,m do
3: Compute distance: dij = d(xi,xj);
4: end for
5: for i = 1,2,...,m do
6: Compute local density by 4: ρi =

∑
j χ(dij − dc);

7: Compute relative distance by 5: δi = minj:ρj>ρi
(dij);

8: Or δi = maxj(dij)
9: end for

10: Draw Decision Plot;
11: Set threshold of ρ, δ;
12: Pick the cluster centers with high ρi and δi;
13: for j = 1,...,m do
14: Ensure the label: λj = argmini∈{1,2,...,k} dji;
15: Assign{xj} to the appropriate clusters: Cλj

= Cλj

⋃
{xj}

16: end for
17: return C = {C1, ..., Ck}

2.4 Other Clustering Methods

In fact, this is just the tip of the iceberg of clustering methods, in addition to that, there are density-based DBSCAN,
hierarchical clustering, spectral clustering, and so on. Due to space constraints, we can’t introduce them one by one, but
you can refer to them for details.

3 Dimensionality Reduction Methods

Problems such as sparse data samples and difficult distance calculation in high-dimensional situations are serious
obstacles faced by all machine learning methods, which are called "dimensionality disasters". [2]An important way to
alleviate the dimensionality disaster is dimensionality reduction, that is, to transform the original high-dimensional
attribute space into a low-dimensional "subspace" through some mathematical transformation, in which the sample
density is greatly increased, and the distance calculation also becomes easier.

Since the Minst dataset we chose has 784 dimensions, we applied dimensionality reduction techniques to our dataset
for calculation and visualization easily.

3.1 Principal component analysis(PCA)

Principal component analysis is one of the most commonly used methods for dimensionality reduction. The main
idea of PCA is to map n-dimensional features to k(< n) dimension, which is a new orthogonal feature, also known as
principal components, which is a reconstructed k-dimensional feature on the basis of the original n-dimensional feature.
We expect it to have the following characteristics:

Re-proximal reconstruction: The sample points are close enough to the hyperplane.

Maximum separability: The specimen points are projected in this hyperplane as far apart as possible.

PCA only needs to retain the mean vector of W and the sample mean, and the new sample can be projected into the
low-dimensional space by simple vector subtraction and matrix multiplication. We discard some of the information, but
it is often necessary for the sake of dimensionality reduction and noise reduction;

4
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Algorithm 4 PCA

Input: Sample set D = {x1, ..., xm};
The number of low-dimensional spatial dimensions: d′

Output:
1: for j = 1,2,...,m do
2: Centralization: xi = xi − 1

m

∑
i=1 mxi;

3: end for
4: Compute Covariance MatrixXXT ;
5: Eigenvalue decomposition (or singular value decomposition);
6: Take the eigenvector corresponding to the largest k eigenvaluesw1, ...,wk

7: return Projection matrixW = {w1, ..., wk};Sample Mean.

3.2 Mainfold Learning

Manifold learning is a class of dimensionality reduction methods that draw on the concept of topological manifolds.
Manifold learning assumes that the data is uniformly sampled in a high-dimensional Euclidean space in a low-
dimensional manifold structure, and it aims to recover the low-dimensional manifold structure from the high-dimensional
sampled data, that is, to find the low-dimensional manifold in the high-dimensional space, and find the corresponding
embedding map to achieve dimension reduction or data visualization.

Manifold learning techniques, such as t-SNE, enable effective visualization of high-dimensional data, revealing
underlying patterns and structures. [5] They preserve local relationships between nearby data points, accurately
representing the intrinsic structure of the data. Also these methods are robust to noise and outliers, focusing on capturing
underlying structure rather than irrelevant features.

We expect it to have the following characteristics:

Local preservation: The local relationships between nearby data points are preserved in the low-dimensional embed-
ding.

Non-linear mapping: Manifold learning techniques aim to capture and represent non-linear structures in the data.

Dimensionality reduction: Manifold learning methods reduce the dimensionality of the data while preserving its
essential structure.

Topology preservation: The topological structure of the data, such as clusters and boundaries, is preserved in the
low-dimensional embedding.

Intrinsic geometry: Manifold learning techniques aim to capture the intrinsic geometry of the data, revealing its
underlying organization.

Non-Euclidean distances: Manifold learning methods often utilize non-Euclidean distance measures to capture the
complex relationships between data points.

Robustness to noise: Manifold learning algorithms are designed to be robust to noise and outliers in the data.

Visualization: Manifold learning techniques are often used for visualizing high-dimensional data in a lower-dimensional
space.

Algorithm 5 Manifold Learning

Input: Sample set D = {x1, . . . ,xm}; The number of low-dimensional spatial dimensions: d′
Output:
1: for j = 1, 2, . . . ,m do
2: Preprocessing step for data point xj ;
3: end for
4: Compute pairwise distances or affinity matrix S based on D;
5: Construct the graph or neighborhood structure based on S;
6: Perform dimensionality reduction to obtain a low-dimensional embedding {y1, . . . ,ym};
7: return Low-dimensional embedding {y1, . . . ,ym};

5
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4 Application

4.1 Data

4.1.1 Aggression

We use the simple dataset "Aggression" to test the obvious differences of clustering performances of three models.

The "Aggression" dataset used in this paper consists of a matrix of text samples and aggression labels. The dataset is
organized into rows and columns, with each row representing a specific text sample and each column representing a
different attribute or feature of that sample. It is a valuable resource in the field of natural language processing and
social science research, providing insights into aggressive behavior in different contexts.

4.1.2 MNIST

The dataset we use in this paper, MNIST, is a matrix of 1,000 28x28 images, and the gray-scale is represented by
numbers. It is a widely used benchmark dataset in the field of machine learning and computer vision. It stands for
the Modified National Institute of Standards and Technology dataset, and it consists of a large collection of grayscale
images of handwritten digits. The dataset has been carefully labeled, making it ideal for training and evaluating various
image classification algorithms.

In this paper, we leverage the MNIST dataset to evaluate the performance of our proposed algorithm in the task of
clustering.

4.2 Definitions of Measurement

Firstly, before the experiment part, we introduce all the evaluation metrics used in this paper.

• Accuracy (ACC): In clustering, accuracy (ACC) is defined as the best match between the ground truth and the
predicted clusters.

ACC = max
m

∑n
i=1 1{yi = m(ci)}

n
(6)

where y represents the ground truth labels, c represents the cluster labels, and m enumerates mappings between
clusters and labels.

• Normalized Mutual Information (NMI): The Normalized Mutual Information (NMI) can be viewed as a
normalization of the mutual information to scale the results between 0 and 1, where 0 indicates no mutual
information and 1 indicates perfect correlation.

NMI =
2I(y, c)

H(y) +H(c)
(7)

where y represents the ground truth labels, c represents the cluster labels, H measures the entropy, and I is the
mutual information between the ground truth labels and the cluster labels.

• Davies-Bouldin Index (DBI): DBI is a measure of clustering quality that takes into account the compactness
and separation of the clustering results. A smaller DBI value indicates a better clustering effect.

DBI =
1

k

k∑
i=1

max
j ̸=i

σi + σj

d(ci, cj)
(8)

where k is the number of clusters, σi is the average distance of all samples in the ith cluster to the cluster
center ci, and d(ci, cj) is the distance between ci and cj .

• Adjusted Rand Index (ARI): ARI is a metric used to measure the similarity of two data distributions, often
used to assess the consistency between the clustering results and the true classification label.

ARI =

∑
ij

(
nij

2

)
− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai

2

)
+

∑
j

(
bj
2

)
]− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

) (9)

where n is the total number of samples, nij represents the number of samples of category i in the ground truth
labels and category j in the clustering result, ai is the number of samples of category i in the ground truth
labels, and bj is the number of samples of category j in the clustering result.

6
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4.3 Experiment and Discussion

Let’s start by looking at the difference on a simple data set, Aggregation.

(A) Based on K-means(7) (B) Based on GMM (C) Based on DPC

FIGURE 1: Clustering Results On Aggregation

It can be found that for the first two, the key is the selection of the number of hyper-parameter clusters, but although the
number of clusters is correct, all the sample points cannot be correctly classified. The outstanding advantage of this
method is that we do not need to try different hyper-parameters multiple times, and dc is more robust than K, which is
also mentioned many times in the original paper[8].

FIGURE 2: Decision Plot On Aggregation

The clustering centers are determined by the decision graph above.

Table 1: Results of Aggression dataset in different method

Davies-Bouldin Index Adjusted Rand Index

K-means 0.7313 0.6
GMM 0.7058 0.5
DPC 0.5036 -

4.3.1 Clustering First

We visualize Minst dimensionality reduction(5) as follows:

7
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(A) Minst dimensionality reduction(2D) (B) Minst dimensionality reduction(3D)

FIGURE 3: Minst dimensionality reduction

The corresponding clustering images are shown below. The strategy we adopt is to cluster first and then reduce
dimensionality.

(A) Based on DPC(2D) (B) Decision Plot On Minst (C) Based on k

FIGURE 4: Clustering Results On Minst By T-SNE

Compared to the previous dataset, we found that there were a lot of data points, which has a high δ but lowρ, called
Outliers(or halo).

Similarly, PCA can also visualize clustering results.

Table 2: Results of MNIST dataset in different method

Davies-Bouldin Index Adjusted Rand Index

K-means 2.7803 0.3088
DPC 3.7451 0.2451

4.3.2 Dimensionality Reducion first

Now, let’s take a different strategy: reduce dimensionality first and then cluster. The corresponding clustering images
are shown below.

8



A PREPRINT - JANUARY 26, 2024

(A) Origin (B) Based on DPC(2D) (C) Based on k

FIGURE 5: Clustering Results On Minst By PCA

(A) Minst dimensionality reduction(2D) (B) Decision Plot On Minst (C) Based on DPC(2D)

FIGURE 6: Clustering Results On Minst By T-SNE

The difference from the previous section is that dimensionality reduction affects the accuracy of clustering. We’ll
compare the impact of dimensions later. Here, since there are too many images, we use a table description, and the
generation of images is detailed in the appendix code.

Table 3: Results of MNIST dataset in different method
Davies-Bouldin Index Adjusted Rand Index

K-means(T-SNE, 2D) 0.7557 0.4832
K-means(T-SNE, 3D) 0.9924 0.4490
DPC(T-SNE, 2D) 0.7926 0.4459
DPC(T-SNE, 3D) 1.1181 0.4304
K-means(PCA, 2D) 0.8295 0.2175
K-means(PCA, 3D) 1.0122 0.2294
DPC(PCA, 2D) 1.0176 0.2231
DPC(PCA, 3D) 1.5835 0.2281

We can find that the first dimensionality reduction obviously shows better performance on the same method than the first
clustering approach, which illustrates the necessity of dimensionality reduction. At the same time, with the difference
of dimensionality, the clustering index will change accordingly, but whether it is linear is still debatable.

We can also see that compared with linear PCA, the nonlinear manifold learning method has outstanding performance
in data processing, but at the same time, it cannot deny the convenience of PCA as a simple and feasible method.

Generally speaking, for clustering, we should combine the actual data set, introduce experts or feature selection if
necessary, that is, dimensionality reduction, specific analysis of specific problems, and select appropriate reduction
methods and clustering methods, so as to deal with the changeable problem in the data world.

9
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5 Improvement

In the clustering algorithm, there are two main ways to improve, one is to change parameters and cluster number, the
other is to improve the way of feature extraction(i.e. Dimensionality Reducion).

In this section, we introduce a method named N2D [6] which relies primarily on the combination of two different
manifold learning methods and use a GMM for the final clustering algorithm. The first manifold learning method is
an autoencoder, which while learning a representation, does not explicitly take local structure into account. We will
show that by augmenting the autoencoder with a manifold learning technique which explicitly takes local structure into
account, we can increase the quality of the representation learned in terms of clusterability. And the second is UMAP,
which seeks to accurately represent local structure, but has been shown to also better incorporating global structure.

5.1 Autoencoder

An autoencoder is a deep neural network consisting of two key components.[3] The first is the encoder, which attempts
to learn a function which maps the input x to a new feature vector (h = f(x)). The second component is the decoder,
which attempts to learn a function which maps the learned feature space back to the original input space (r = g(h)). In
other words, it is a neural network which attempts to copy its input to its output. This is typically achieved via a form of
regularization, for example by forcing the network to compress the input into a lower dimensional space. The learning
process can be described as minimizing the loss function L(x, g(f(x))), where L is a function which penalizes g(f(x)) for
being dissimilar to x. One such loss may be the Mean Squared Error (MSE).

5.2 UMAP

UMAP[7] is a recently proposed manifold learning method, which seeks to accurately represent local structure, but has
been shown to also better incorporating global structure. UMAP relies on three assumptions, namely that the data is
uniformly distributed on a Riemannian manifold, that the Riemannian metric is locally constant and that the manifold is
locally connected. From these assumptions it is possible to model the manifold with a fuzzy topological structure. The
embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent
fuzzy topological structure

5.3 Algorithm

We summarize the high level steps of our proposed method N2D as:

Algorithm 6 N2D

1: Apply an autoencoder to the raw data to learn an initial epresentation.
2: Re-embed the autoencoded embedding by UMAP.
3: Given this new, more clusterable embedding, apply GMM to discover the clusters.

More concisely, we may also simply represent N2D as

C = FC(FM (FA(X))) (10)

where C is the final clustering, FC is the clustering algorithm, FM is the manifold learner, FA is the autoencoder and X
is the original data.

5.4 Experiment

5.4.1 Datasets

• MNIST: A traditional benchmark dataset consisting of 70,000 handwritten digits belong to 10 different classes.
• MNIST-test: A subset of the MNIST dataset, containing only the test set of 10,000 images.

5.4.2 Evaluation Metrics

We will use four standard evaluation metrics mentioned in Sec.3.2 for validating the performance of unsupervised
clustering algorithms. In both cases, values range between 0 and 1, where higher values correspond to better clustering
performance.

10
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5.4.3 Experiment Settings

We base our autoencoder on the architecture described by Xie et al. [28], which is a fully connected Multi-Layer
Perceptron (MLP). As typical with autoencoders, the decoder network is a mirror of the encoder. All layers use ReLU
activation. The optimizer is Adam. We train the autoencoder on for 1000 epochs for all datasets. We use UMAP with
the following default parameter set across all datasets. The number of neighbours is 20, the number of dimensions is
the number of clusters, and the minimum distance between each point in the manifold is 0. We use a GMM for the final
clustering algorithm, where each component has its own general covariance matrix, and there are c components, where
c is the number of clusters.

5.4.4 Result

Table 4: Results of N2D
Davies-Bouldin Index Adjusted Rand Index Accurancy Normalized Mutual Information(NMI)

N2D - 0.9376 0.9714 0.882

(A) Clustering in training set (B) Clustering in test set

FIGURE 7: N2D Clutering Visualization

From the visualization results[4], we can see that the N2D model successfully distinguishes different handwritten digits
by clustering. Compared to some of the classical models mentioned earlier, N2D also performs better on DBI and ARI
values. Otherwise, the ACC and NMI values of N2D are also surprisingly high, which shows that N2D modeling is
very successful. However, as we can tell from the visualization result, N2D does not perform as well on some numbers
as DPC.

6 Conclusion

We can see from Tab.1 that K-means algorithm achieved a Davies-Bouldin Index(DBI) of 0.7313 and an Adjusted Rand
Index(ARI) of 0.6, while the Gaussian Mixture Model (GMM) achieved a slightly lower DBI of 0.7058 and an ARI of
0.5. This suggests that the GMM method performed slightly worse than K-means in terms of clustering quality for
some simple dataset like ’Aggression’. Meanwhile, The Density Peak Clustering (DPC) algorithm achieved the lowest
DBI of 0.5036, we can conclude that DPC performs the best for simple datasets.

The results of Tab.2 indicate that K-means struggled to effectively cluster the MNIST dataset, as the high DBI
suggests poor separation between the clusters and the low ARI indicates limited agreement with the ground truth labels.
Meanwhile, DPC algorithm achieved a higher DBI of 3.7451 and a lower ARI of 0.2451. These results suggest that
DPC also faced challenges in effectively clustering the MNIST dataset. We can say that we should put more efforts into
optimizing classic clustering methods when it comes to high-dimensional data.

Based on the results of Tab.1 and Tab.2, it can be concluded that:

• The K-means algorithm generally performed better on the Aggression dataset compared to the MNIST dataset.

11
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• The DPC algorithm showed promising results on the Aggression dataset with a low DBI, indicating good
separation between clusters.

• However, both K-means and DPC struggled to effectively cluster the MNIST dataset, as shown by their high
DBI and low ARI.

These findings highlight the importance of considering the characteristics and complexity of the dataset when selecting
and evaluating clustering algorithms. Further investigations and experiments with alternative methods may be necessary
to achieve better clustering results on the MNIST dataset, given that our models don’t perform very well on it.

With Tab.2 and Tab.3, it shows that:

• Dimensionality reduction is necessary. When we use dimensionality reduction without changing other
parameters, the ARI is increased from 0.2451 to 0.4459, almost double the former effect.

• Nonlinear manifold learning is outgoing in some ways. PCA is easier but inaccurate.

• The optimal dimension of dimensionality reduction is uncertain.

PCA is a linear mapping, but at the same time, it is simple and loses a lot of the original information of the data, so you
should be cautious when using it. Of course, we should be cautious about dimensionality reduction techniques. As we
can see, it’s not that the dimensionality is about high, and the more information there is, the better the accuracy will
be. Sometimes, it may be the opposite: low dimensions are more effective. As a result, many times, dimensionality
reduction and clustering can only rely on traversal.

From Tab.4, we can see that:

• The ARI for the N2D model is 0.9376, indicating a relatively high level of agreement between the clustering
results and the ground truth labels. This suggests that the N2D model performed well in terms of assigning
data points to their correct clusters.

• The N2D model achieved an accuracy of 0.9714, indicating a high percentage of correctly classified data
points.

• The Normalized Mutual Information (NMI) for the N2D model is 0.882, indicating a strong level of mutual
information shared between the clustering results and the ground truth labels.

Comparing the N2D model with the former two models (K-means and DPC) regarding their clustering performances on
the MNIST dataset, the N2D model demonstrates several advantages:

• The N2D model achieved the best clustering performance in terms of the DBI, indicating superior separation
between clusters.

• The N2D model also outperformed the previous models in terms of the ARI and NMI, suggesting better
agreement with ground truth labels and more accurate clustering assignments.

• These results indicate that the N2D model is capable of effectively capturing the inherent structure and patterns
within the high-dimensional MNIST dataset.

Therefore, based on these findings, the N2D model shows promise as a powerful approach for clustering high-
dimensional datasets like MNIST, offering improved performance compared to traditional clustering algorithms such
as K-means and DPC. Further research and experimentation with the N2D model could potentially yield even better
clustering results and advance our understanding.

7 Some Thinking

7.1 Dimensionality Reduction Before Clustering

When dealing with high-dimensional matrix datasets, we can consider using dimensionality reduction techniques such
as PCA to preprocess the data before further analysis. In this paper, we apply clustering methods on the dataset before
using PCA to reduce the dimensions, thus the code execution can be a bit slow by comparison, adding difficulty to data
processing. We can work on that in the future. The followings are some benefits of utilizing dimensionality reduction
techniques such as PCA as a preprocessing step before handling high-dimensional matrix datasets that we come up
with, which might be helpful for future research:
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• Reduced computational complexity:
High-dimensional datasets often suffer from the curse of dimensionality, where the computational cost and
resource requirements increase exponentially with the number of dimensions. By applying PCA or similar
methods to reduce the dimensionality, we can significantly reduce the computational complexity of subsequent
data processing tasks, making them more efficient and feasible.

• Improved interpretability:
High-dimensional datasets can be difficult to interpret and visualize. By reducing the dimensionality using
PCA, we can transform the data into a lower-dimensional space where patterns and relationships can be more
easily understood and visualized. This can aid in gaining insights and understanding the underlying structure
of the data.

• Noise reduction and feature selection:
Dimensionality reduction techniques like PCA can help in filtering out noise and identifying the most important
features or components in the data. By retaining only the most relevant dimensions, we can reduce the impact
of irrelevant or noisy features, leading to improved data quality and more accurate analysis results.

• Enhanced model performance:
High-dimensional datasets can pose challenges to machine learning models, such as overfitting and reduced
generalization ability. By reducing the dimensionality, we can alleviate these issues and improve the perfor-
mance of machine learning models. The reduced feature space can focus on capturing the most informative
aspects of the data, leading to more robust and accurate models.

7.2 Neural Network Construction

• Problems in Construction and Future Research Actually, when we first started designing the final as-
signment, we plan to design a convolutional neural network as the dimensionality reduction method before
the clustering algorithm in the Improvement part. However, the Conv+K-Mean model doesn’t perform well
in the clustering while each of these components excellently performs the task of classifying the MNIST
dataset, which makes we really confused. This may be due to the unreasonable design of convolutional neural
network and the failure of feature extraction. In this case, our future research interest is also determined, that
is, clustering task based on neural network feature extraction.

• Neural Network’s Performance in MNIST Classification As we mentioned before, we design some neural
networks for the feature extraction but in vain. However, these neural network performs well in the MNIST
classifying task, thus we decide to put these neural network’s result in this part as an add-on. And some of the
neural network models I use are as follows

– Convolutional Neural Network(CNN)
– Bidirectional Recurrent Neural Network(BRNN)

Table 5: Results of Neural Networks
Convolutional Neural Network Bidirectional Recurrent Neural Network

Classify Accurancy 98.96% 97.33 %
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